Natural Variation in the Developmental Consequences of a Loss of **Chloroplast Translation in Arabidopsis thaliana**

Nicole Bryant, Yixing Wang, David Meinke

Department of Botany, Oklahoma State University, Stillwater, OK, USA

Abstract

Interfering with chloroplast translation is typically more detrimental to growth and development in Arabidopsis than in Brassica or maize. This difference appears to reflect, in part, variation in the presence and functionality of a duplicated nuclear gene encoding a plastid-localized acetyl-CoA carboxylase (ACCase) required for fatty acid biosynthesis. In this study, we demonstrate that different accessions of Arabidopsis thaliana also vary in their ability to tolerate a loss of chloroplast translation. Two different approaches were pursed to block chloroplast translation: incorporation of spectinomycin into culture media used for seedling growth; and analysis of mutants defective in genes encoding chloroplast-localized ribosomal proteins. From an initial survey of 52 early-flowering accessions germinated on spectinomycin, several were chosen for further analysis: tolerant accessions that produced albino rosettes; sensitive accessions with at most rudimentary leaves; and sensitive/intermediate accessions associated with knockouts of EMB genes encoding chloroplast-localized ribosomal proteins. When sensitive and tolerant accessions were crossed and responses of F2 plants analyzed on spectinomycin, results were in some cases consistent with a single locus conferring tolerance. Crosses were then performed between mutants defective in chloroplast translation and representatives of tolerant and sensitive accessions. This resulted in the identification of a suppressor locus (Tsu-0 accession) that partially rescues mutant seeds and maps to the ACC2 region of chromosome 1. Other genetic modifiers that support further embryo development were also found. Surprisingly, RT-qPCR experiments revealed that ACC2 expression is not elevated in seedlings of tolerant accessions. Other features that map to the ACC2 region must therefore be involved. Possibilities include increased translation efficiency, chloroplast protein import, enzyme function, or protein stability. Whether ACC2 activation in transgenic plants completely rescues mutant embryos remains to be determined. However, ACC2 knockouts appear to be more sensitive to spectinomycin, consistent with our model. Overall, this work highlights the importance of evaluating accession-specific differences in mutant phenotypes in Arabidopsis.

Partial Embryo Rescue Found in F₁ Siliques

Mutant	Tolerant Accession	Siliques Screened	Seeds Screened	Mutant Seeds	Fraction of Mutant Seeds Exhibiting Embryo Rescue	Avg. Size of Mutant Embryos Identified
emb3126-Riken	Tsu-0	40	1842	24.1%	71.4%	84 µm
emb3137-Riken	Tsu-0	40	1939	24.3%	75.4%	78 µm

Expected Classes of F₂ **Plants Identified:**

Class	Plants Screened	Total Seeds	Percent Mutant Seeds	Percent Embryo Visible	EMB3126-Riken x Tsu
					Parental Seed Phenotype (S
SS	21	3199	27.0	0.8	Both Seed Phenotypes (ST)
ST	49	6103	26.3	76.7	Rescued Seed Phenotype (T
ТТ	31	7862	25.3	99.4	
					Early TT: 16 Plants
Wild Type	45	1549	0.2	-	Intermediate: 9 Plants
Total	146	18713	-	-	Late TT: 6 Plants

Current Model

A single chloroplast gene (accD) is critical for embryo development in Arabidopsis. This gene encodes one heteromeric the component of enzyme ACCase, which is required for the initial stages of fatty acid biosynthesis in plastids

Seedling Responses of Arabidopsis Accessions on Spectinomycin

Genetic Modifiers Identified in Tsu-0 Accession

Suppressor Locus Maps to ACC2 Region

Several tolerant (Tsu-0, JI-3, Be-1), sensitive (Nossen, Oy-0, Nie1-2), and intermediate (Col-0) accessions were chosen for detailed analysis. F₂ seedling responses following crosses between Tsu-0 and Nossen accessions suggested a single locus might be involved. Blue bars represent accessions associated with knockouts of chloroplast-localized ribosomal proteins.

Embryo Phenotypes of Knockouts of Chloroplast-Localized Ribosomal Proteins **Differ According to Parental Accession**

Source	Strong ource Mutant Accession Embryo Phenotype		Embryo Phenotype	Mutants Chosen for Detailed Analysis						
Riken	Alleles 6	Nossen	Preglobular	Gene	Ribosomal Protein	Mutant Allele	Source	Accession	Embryo Phenotype	Embryo Size (µm)
Syngenta	3	Columbia	Large Globular	EMB3126	11	1	Riken	Nossen	Preglobular	25
SALK	4	Columbia	Large Globular		LI	3	JIC	Ler	Small Globular	60
CSHL	1	Ler	Small Globular		642	1	Riken	Nossen	Preglobular	25
JIC	1	Ler	Small Globular	EIVIB3137	137 513	2	SALK	Columbia	Large Globular	90

Note the correlation between the stage of embryo arrest and the growth response of wild-type seedlings on spectinomycin.

F ₂ Plant Phenotype	Symbol	Plants Genotyped	ACC2 Genotype Results
Late	тт	49	Homozygous Tsu-0
Early	SS	29	Homozygous Nossen
Both	ST	2/79	Heterozygous
Wild Type	WT	0/82	Not Tested

ACC2 Expression in Different Accessions

Transcript abundance does not explain spectinomycin tolerance

Crosses Between Tolerant Accessions and Embryo-Defective Mutants in a Spectinomycin-Sensitive Background

F ₁ Parental Plant Genotype: EeST				
Gametes	ES	ΕТ	e S	еТ
ES	WT; S	WT; H	H; S	H; H
ΕT	WT; H	WT; T	Н; Н	Н; Т
e S	H; S	Н; Н	X; S	Х; Н
е Т	Н; Н	Н; Т	Х; Н	Х; Т
E = EMB; $e = emb$; $S = Sensitive$; $T = Tolerant$				
Gametes Wild-type		Hetero	Aborted	

Expected Results if Suppressor Identified

- F_1 Siliques: 25% Mutant (F_2) Seeds
- F₂ Mutant Seeds: 75% are Rescued

Segregating F_2 Plants:

- 25% of Plants: Parental Seed Phenotype 25% of Plants: Rescued Seed Phenotype 50% of Plants: Both Seed Phenotypes
- F₃ Generation: Plants with later seed phenotypes if other genetic modifiers present

Accession Differences in ACC2 Protein Sequence Do Not Correlate With Spectinomycin Tolerance

N-Terminal Region Including Chloroplast-Localization Sequence

70

J1_3	MEMRALGSSCSTGNGGSAPITLTNISPHITTVFPSTYKLRSSLRTFKGYSSRVRTFKGYSSTRYLFRTKQQFPLFCFLNPDPISFLDNDYSEAERTVYLPDGSYNG
Tsu-0	MEMRALGSSCSTGNGGSAPITLTNISPHITTVFPSTYKLRSSLRTFKGYSSRVRTFKGYSSTRVLSRTKQQFPLFCFLNPDPISFLDNDVSEAERTVVLPDGSVNG
Hz_O	MEMRALGSSCSTGNGGSAPITLTNISPHITTVFPSTVKLRSSLRTFKGVSSRVRTFKGVSSTRVLSRTKQQFPLFCFLNPDPISFLDNDVSEAERTVVLPDGSVNG
Hei_O	MEMRALGSSCSTGNGGSAPITLTNISPHITTYFPSTYKLRSSLRTFKGYSSRYRTFKGYSSTRYLSRTKQQFPLFCFLNPDPISFLDNDYSEAERTYYLPDGSYNG
Yeg-1	MEMRALGSSCSTGNGGSAPITLTNISPHITTVFPSTYKLRSSLRTFKGYSSRVRTFKGYSSTRYLSRTKQQFPLFCFLNPDPISFLDNDYSEAERTVYLPDGSYNG
Col-O	MEMRALGSSCSTGNGGSAPITLTNISPHITTYFPSTYKLRSSLRTFKGYSSRYRTFKGYSSTRYLSRTKQQFPLFCFLNPDPISFLENDYSEAERTYYLPDGSYNG
Ler-1	MEMRALGSSCSTGNGGSTPITLTNISPHITTVFPSTVKLRSSLRTFKGVSSRVRTFKGVSSTRVLFRTKQQFPLFCFLNPDPISFLDNDVSEAERTVVLPDGSVNG
No-0	MEMRALGSSCSTGNGGSAPITLTNISPHITTYFPSTYKLRSSLRTFKGYSSRYRTFKGYSSTRYLSRTKQQFPLFCFLNPDPISFLDNDYSEAERTYYLPDGSYNG
Bay-0	MEMRALGSSCSTGNGGSAPITLTNISPHITTVFPSTYKLRSSLRTFKGVSSRVRTFKGVSSTRVLSRTKQQFPLFCFLNPDPISFLDNDVSEAERTVVLPDGSVNG
Qui-O	MEMRALVSSCSTGNGGSAPITLTNISPHITTVFPSTVKLRSSLRTFKGVSSRVRTFKGVSSTRVLSRTKQQFPLFCFLNPDPISFLENDVSEAERTVVLPGGSVNG
HR_10	MEMRALGSSCSTGNGGSAPITLTNISPHITTVFPSTYKLRSSLRTFKGVSSRVRTFKGVSSTRVLSRTKQQFPLFCFLNPDPISFLDNDVSEAERTVVLPDGSVNG
0y-0	MEMRALGSSCSTGNGGSAPITLTNISPHITTVFPSTYKLRSSLRTFKGVSSRVRTFKGVSSTRYLSRTKQQFPLFCFLNPDPISFLDNDVSEAERTVYLPDGSVNG
Nie1-2	MEMRALVSSCSTGNGGSAPITLTNISPHITTVFPSTVKLRSSLRTFKGVSSRVRTFKGVSSTRVLSRTKQQFPLFCFLNPDPISFLENDVSEAERTVVLPGGSVNG

10 20 30

Supported by Grants from the **National Science Foundation**

