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The Big Question

A conditional-type hypothesis test in conjunction
with a log-linear model was utilized to determine
if bacteria is related to productivity, but what if

we were to use an unconditional hypothesis test?

Abstract

In Anderson and Habiger 2011, a conditional hy-
pothesis test, along with an FDR method, was uti-
lized to determine which bacteria in the rihizosphere
are related to productivity. However, an uncondi-
tional hypothesis test could have been utilized. This
poster describes the methodology in the aforemen-
tioned paper as well as the relevant conditional and
unconditional hypothesis tests in detail. A simula-
tion study for determine which test is more powerful,
i.e. will more likely reject the null hypothesis that a
bacteria is not related to productivity, is presented.
The study suggests that the conditional hypothesis
test is more powertul than the unconditional test. R
code used for the study is provided.

Introduction

-Our goal was to determine if the presence or ab-
sence of bacteria in the rhizosphere is related to the
productivity of a wheat plant for each of 700 plus
diferent bacteria.

-Determine the most powerful test.

Literature Methodology

A conditional hypothesis test, in conjunction with
a log-linear model was used. Assuming log(pu;) =
By + Bz, Where Hy @ py = o = ... =
us or Hy : 7 = 0 is the null hypothesis tested
against Hy : 81 # 0. Also assume that under the
null Y7, Y5, ...Y5| 22, Y; = y. has a multinomial dis-
tribuition. In Anderson and Habiger the p-value was
adjusted using

FDR =

number of type 1 errors

number of rejected null hypothesis

for the Log-Linear Model
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Computing a P-value

For both methods we assume Y; ~ Poisson(u;) and
to compute a suflicent test statistic we use:
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The p-value can be estimated by

p — value = P(T/>\Tabs).
For the conditional method we compare T,
to the distribuition of T given Y. by sampling
Yl(b), Yz(b), - Y:"") from a multinomial distribuition
with a probability vector (1/5,1/5,1/5,1/5,1/5) of
S1ze .

For the unconditional method we use the marginal
distribuition of T" estimated by shuffling Y7,Y5.... Y5
to obtain Yl(b), Yg(b>, - Y=,

Methodology

The powers were compared at a 0.05 level by simu-
lation. The steps for simulation are as follows:
-Step 1: Estimate the power for a specified 5, and
31, by generating y%k),yék), ...,yék) from a Poisson
(11;) distribuition, where p; = e

-Step 2: Compute the conditional and unconditional
p-values denoted by pgﬁj}m and pgjl)c, fork=1, 2, ...,

5000 as previously described.
-Step 3: Compute the powers as follows.

number of p(k) < 0.05

cond
POW(eond) = 10000
and
number of pl*) < 0.05
POWune) = 10000 '

Specific values of 81 and By were chosen with the
intent of ensuring that p; < 10 and to allow for
positive, negative and no relationship with x.

The Connection
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For both methods the test statistic is computed as T®) = | '21 ;1,0 —70) '21 x;|. This process is repeated
1= 1=

10000 times to obtain TW. T
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Figure 1: The unconditional (top) and conditional (bottom)

distributions of T for 1000 replications for bacteria 9 are above.

A (10000) ~ The p-value is estimated via p — value = #d

<b)/3>frobs
10000

Results
01 0o U. Pow C. Pow w1 o ps | gy s
1 -2 0.180 | 0415 0.323 0.517 0.8271.448 2. 718
2-41 0.543 | 0.971 10.104/0.267 0.684 2.096 7.389
-1 2 0.109 @ 0.380 3.096/1.935/1.210 0.691 0.369
204 0.311 1 0.989 19.58313.743 1.462 0.47710.135
0 1 0.000 @ 0.003 2.718 2.718 2.718 2.718 2.718
0 2 0.028  0.039 4.750/4.750 4.7504.7504.750

Table 1: Power of conditional and unconditional tests.

For example, when ;=2 and 8y=-4, the conditional
power is 0.97 while the unconditional power is 0.530
making the conditional test a more powerful test.
Thus, simulation studies suggest the conditional test
is more powerful.

Comparison of Conditional and Unconditional Tests

R-Code

# # #1Imput the appropriate values of x and y as below: ###
x =¢(.87,1.34,1.81,2.37,3)

y =¢(1,5,6,2,13)

# # # exact unconditional pval ###4#

get.pvall<-function(y){
T1<-rep(0,10000)
T = abs(sum(x*y) - mean(y)*sum(x))
for(i in 1:10000)
{
yO<-sample(y)
T1[i]<-abs(sum(x*y0) - mean(y0)*sum(x))
b
pval = mean(T1>=T)
return(list(pval,T1))}

# # # # exact conditional pval# # #

get.pval2<-function(y){

T1<-rep(0,10000)

T = abs(sum(x*y) - mean(y)*sum(x))

for(i in 1:10000)
{
yO0<-rmultinom(1,sum(y),c(.2,.2,.2,.2,.2))
T1[i]<-abs(sum(x*y0) - mean(y0)*sum(x))
b

pval = mean(T1>=T)

return(list(pval,T1))}

#Example
get.pvall(y=c(1,5,6,2,13)
get.pval2(y=c(1,5,6,2,13)

## # # simulation of power ########

simulate<-function(reps = 1000, bl = 1,b0=-1){
pvalcond<-rep(0, reps)
pvaluncond<-rep(0,reps)
mu = exp(b0+b1*x)
for(i in 1:reps)

{y = rpois(5, mu)

pvaluncond[i] = get.pvalli(y)[[1]]

pvalcond[i] = get.pval2(y)[[1]]

print(i)

¥
power.uncd = mean(pvaluncond<=.05)
power.cond = mean(pvalcond<=.05)
return(c(power.uncd = power.uncd, power.cond=power.cond))}

#Example
bOn2b1l1<-simulate(reps = 5000,b0=-2,b1=1)
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